Presentation at International Workshop on Nitride Semiconductors(IWN 2018)
Presentation ID: TuP-GR-1, 13 November 2018
Presentation ID: TuP-GR-1, 13 November 2018
H | He | ||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Se | As | Se | Br | Kr |
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe |
Cs | Ba | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
Fr | Ra | Lr | Lr | Rf | Db | Sg | Bh | Hs | Mt | Dg | Rg | ||||||
La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | ||||
Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No |
Stull, D. R. (1947). Inorganic compounds. Industrial & Engineering Chemistry, 39(4), 540-550.
Scott, D. W., Oliver, G. D., Gross, M. E., Hubbard, W. N., & Huffman, H. M. (1949). Hydrazine: Heat capacity, heats of fusion and vaporization, vapor pressure, entropy and thermodynamic functions. Journal of the American Chemical Society, 71(7), 2293-2297.
Stull, D. R. (1947). Inorganic compounds. Industrial & Engineering Chemistry, 39(4), 540-550.
In typical HVPE process for GaN deposition gallium monochloride GaCl and ammonia NH3 are used as precursors of gallium and nitrogen:
GaCl+NH3=GaN+HCl+H2
The reaction is exothermic, and the reaction driving force decreases with increasing temperature:
Typical deposition temperature for epitaxial growth is 800-1100°C. At lower temperatures the deposition rate decreases due to reaction kinetic limitation, at higher temperatures the deposition rate decreases as a result of a decrease in supersaturation:
GaN deposition by reaction of gallium trichloride GaCl3 and ammonia
GaCl3 + NH3 = GaN + 3HCl
is endothermic and the reaction driving force increases with increasing temperature, that makes possible to deposit GaN at temperatures 1300-1400°C:
Maruska, H. P. and Tietjen, J. J., “The preparation and properties of vapor-deposited single-crystalline GaN”, Applied Physics Letters 15, 10 (1969), pp. 327-329.
Ban, Vladimir S., “Mass Spectrometric Studies of Vapor-Phase Crystal Growth II.”, Journal of the Electrochemical Society 119, 6 (1972), pp. 761–765.
Seifert, W. and Fitzl, G and Butter, E., “Study on the growth rate in VPE of GaN”, Journal of Crystal Growth 52 (1981), pp. 257–262.
Fornari, R. and Bosi, M. and Armani, N. and Attolini, G. and Ferrari, C. and Pelosi, C. and Salviati, G., “Hydride vapour phase epitaxy growth and characterisation of GaN layers”, Materials Science and Engineering: B 79, 2 (2001), pp. 159–164.
Usui, A., “Bulk GaN crystal with low defect density grown by hydride vapor phase epitaxy”, дюйм MRS Proceedings vol. 482, no. 1 (, 1997).
Malinovsky, V. V. and Marasina, L. A. and Pichugin, I. G. and Tlaczala, M., “The Growth Kinetics and Surface Morphology of GaN Epitaxial Layers on Sapphire”, Crystal Research and Technology 17, 7 (1982), pp. 835–840.
Koukitu, Akinori and Mayumi, Miho and Kumagai, Yoshinao, “Surface polarity dependence of decomposition and growth of GaN studied using in situ gravimetric monitoring”, Journal of Crystal Growth 246, 3 (2002), pp. 230–236.
Murakami, H., Takekawa, N., Shiono, A., Thieu, Q. T., Togashi, R., Kumagai, Y., … & Koukitu, A. (2016). Tri-halide vapor phase epitaxy of thick GaN using gaseous GaCl3 precursor. Journal of Crystal Growth, 456, 140-144.
Pure elements
Binary compounds
Clark, H. C., & Emeléus, H. J. (1957). 406. Some physical and chemical properties of vanadium pentafluoride. Journal of the Chemical Society (Resumed), 2119-2122.
Trevorrow, L. E., Fischer, J., & Steunenberg, R. K. (1957). The Preparation and Properties of Vanadium Pentafluoride1. Journal of the American Chemical Society, 79(19), 5167-5168.
Cavell, R. G., & Clark, H. C. (1963). DENSITY, VISCOSITY, AND SURFACE TENSION OF VANADIUM PENTAFLUORIDE. JOURNAL OF THE CHEMICAL SOCIETY, (AUG), 4261.
Fairbrother, F., Grundy, K. H., & Thompson, A. (1965). 121. The halides of niobium and tantalum. Part VIII. The densities, viscosities, and self-ionisation of niobium and tantalum pentafluorides. Journal of the Chemical Society (Resumed), 761-765.
Fairbrother, F., & Frith, W. C. (1951). 675. The halides of niobium (columbium) and tantalum. Part III. The vapour pressures of niobium (columbium) and tantalum pentafluorides. Journal of the Chemical Society (Resumed), 3051-3056.
Alexander, K. M., & Fairbrother, F. (1949). S 48. The halides of columbium (niobium) and tantalum. Part I. The vapour pressures of columbium (niobium) and tantalum pentachlorides and pentabromides. Journal of the Chemical Society (Resumed), S223-S227.